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The Natural

The Artificial
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Let’s begin by asking a simple question:

what is the natural, and what about the artificial?
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The Natural

https://icons8.com/

We can generally describe the natural as anything that already existed on earth.

Or anything that is not made by the human, including the human

https://icons8.com/
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The Artificial

https://icons8.com/

We can generally describe the artificial as everything other than the natural.

Or anything that is made by the human

https://icons8.com/
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Human
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Unknown Unknowns

Human

Scientific Discoveries
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Human

Engineering Artifacts
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Decision Making as an Optimization Problem
• Optimization is an inherently 

mathematical subject. 
• It is about maximizing or minimizing some 

mathematical function to arrive at the best 
possible solution to a problem, and 
involves creating design options that are 
shaped by certain outcomes as they are 
being created.

• Optimization problems arise in all kinds 
of fields, from aerospace engineering to 
architectural design. 
• However, regardless of domain, every 

optimization problem has three features:
• An objective function. 
• Constraints.
• Data.

12AI in Design



Decision Making as an Optimization Problem
• Without any loss of generality an optimization problem can be defined by:

min 𝑓! 𝑥 𝑥"#𝑚 = 1,… ,𝑀

s. t. 𝑔$ 𝑥 ≤ 0
ℎ% 𝑥 = 0

𝑥"# ≤ 𝑥" ≤ 𝑥"&
𝑥 ∈ Ω

𝑥"#𝑗 = 1,… , 𝐽
𝑥"#𝑘 = 1,… , 𝐾
𝑥"#𝑖 = 1,… , 𝑁

𝑥"#

• where 
• 𝑥! represents the 𝑖-th variable to be optimized, 𝑥!" and 𝑥!# its lower and upper bound, 

• The variables that defines describes the problems, more if the problem is complex, less if simple
• 𝑓$ the 𝑚-th objective function, 

• Your goal, or the decision you want to make

• 𝑔% the 𝑗−𝑡ℎ inequality constraint and 
• A type of constraints that you need to satisfy within a range

• ℎ& the 𝑘-th equality constraint.
• Another type of constraints that you MUST/WANT TO satisfy for sure

13AI in Design

If to max 𝑓$, 
then use −𝑓$ instead.

s. t. means subject to



Decision Making as an Optimization Problem
• Be aware of the complete optimization problem helps you 

• to identify the challenging facets of your optimization problem and, thus, 
• to select a suitable algorithm
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Variable Types. 
• The variables span the search space Ω of your optimization problem. Thus, the type of variables is an essential aspect of the problem to be paid attention to. Different 

variables types, such as continuous, discrete/integer, binary, or permutation, define the characteristics of the search space. In some cases, the variable types might be even 
mixed, which increases the complexity further.

Number of Variables. 
• Not only the type but also the number of variables (𝑁) is essential. For either a very small or large number, different algorithms are known to work more efficiently. You 

can imagine that solving a problem with only ten variables is fundamentally different from solving one with a couple of thousand. For large-scale optimization problems, 
even the second-order derivate becomes computationally very expensive, and efficiently handling the memory plays a more important role.

Number of Objectives. 
• Some optimization problems have more than one conflicting objective (𝑀>1) to be optimized. Before researchers have investigated multi-objective optimization, single-

objective problems were the main focus. Single-objective optimization is only a particular case where 𝑀=1. In multi-objective optimization, the solution’s domination 
relation generalizes the comparison of two scalars in single-objective optimization. Moreover, having more than one dimension in the objective space, the optimum (most 
of the time) consists of a set of non-dominated solutions. Because a set of solutions should be obtained, population-based algorithms have mainly been used as solvers.

Constraints. 
• Optimization problems have two types of constraints, inequality (𝑔) and equality (ℎ) constraints. From an end-user perspective, constraints have a priority over objective 

values. No matter how good the solution’s objectives are, it is considered infeasible if it turns out to violate just a single constraint. Constraints can have a big impact on the 
complexity of the problem. For instance, if only a few islands in the search space are feasible or a large number of constraints (|𝐽|+|𝐾|) need to be satisfied. For genetic 
algorithms satisfying equality constraints can be rather challenging. Thus, this needs to be addressed differently, for instance, by mapping the search space to a utility space 
where the equality constraints are always satisfied or injecting the knowledge of the equality constraint through customization.

Multi-modality. 
• Most aspects discussed so far are most likely known or to be relatively easy to define. However, the nature of the fitness landscape is less obvious bet yet essential to be 

aware of. In the case of multi-modal fitness landscapes, optimization becomes inevitably more difficult due to the existence of a few or even many local optima. For the 
solution found, one must always ask if the method has explored enough regions in the search space to maximize the probability of obtaining the global optimum. A multi-
modal search space quickly shows the limitation of local search, which can easily get stuck.

Differentiability. 
• A function being differentiable implies the first or even second-order derivative can be calculated. Differentiable functions allow gradient-based optimization methods to 

be used, which can be a great advantage over gradient-free methods. The gradient provides a good indication of what direction shall be used for the search. Most gradient-
based algorithms are point-by-point based and can be highly efficient for rather unimodal fitness landscapes. However, in practice, often functions are non-differentiable, 
or a more complicated function requires a global instead of a local search. The research field addressing problems without knowing their mathematical optimization is also 
known as black-box optimization.

Evaluation Time. 
• Many optimization problems in practice consist of complicated and lengthy mathematical equations or domain-specific software to be evaluated. The usage of third-party 

software often results in a computationally expensive and time-consuming function for evaluating objectives or constraints. For those types of problems, the algorithm’s 
overhead for determining the next solutions to be evaluated is often neglectable. A commercial software performing an evaluation often comes with various more practical 
issues such as distributed computing, several instances to be used in parallel and software license, and the software’s possible failure for specific design variable 
combinations.

Uncertainty. 
• Often it is assumed that the objective and constraint functions are of a deterministic manner. However, if one or multiple target functions are nondeterministic, this 

introduces noise or also referred to as uncertainty. One technique to address the underlying randomness is to repeat the evaluation for different random seeds and average 
the resulting values. Moreover, the standard deviation derived from multiple evaluations can be utilized to determine the performance and the reliability of a specific 
solution. In general, optimization problems with underlying uncertainty are investigated by the research field called stochastic optimization.

Variable Types

Number of Variables

Number of Objectives

Constraints

Multi-modality

Differentiability

Evaluation Time

Uncertainty

Refer to the text if interested



Design as Decision Making
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Natural

Artificial

Harvard Business Review & IDEO

Unknown Unknowns

Structured Methods

Human

Scientific Discoveries

Engineering Artifacts

(Human-centered)

DesignTo Understand To Utilize

learning from 
your customers

brainstorm as many 
ideas as possible

bringing
that ideal
solution to market
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Principals of Data-driven Technology
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Scientific discoveries are 
based on observations 
represented as data

Engineering artifacts can 
be described as algorithms 
in models

A process or a set of rules

Perceivable, at least Data can be 
used to either 
train or test a 

model
/

A model can 
generate useful 

data
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AImeetsDesign
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The Science and Engineering of Design and Learning
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The Science and Engineering of Design and Learning
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The Role of AI in Design
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Take a break … and 
come back in 10 mins

DS323 AI in Design
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Generative Design
an advanced engineering methodology that combines 

geometry generation, simulation, and design automation

25
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Introduction to Generative Design
26Generative Design

https://www.youtube.com/watch?v=hk4TN8xkSQM



Computational Design
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• Computational design is NOT
any one algorithm or off-the-
shelf process you can utilize. 

• Rather, we describe it as an 
approach whereby a designer 
defines a series of instructions, 
rules and relationships that 
precisely identify the steps 
necessary to achieve a 
proposed design and its 
resulting data or geometry.

• Crucially, these steps must be 
computable, meaning they can 
be understood and calculated by 
a computer.

Image of an NURBS manipulations from Martin Stacey - UCL



Computational Design
• When approaching a 

design computationally, 
the designer would 
• focus on developing 

the procedure that 
would create a 
design - not the 
design itself.

• The process of iterating 
through options and 
data are offloaded to a 
computer. 
• Saves time, money 

and effort
• Lets the designer 

focus on the 
creativity of the 
design process

28Generative Design

Image of an NURBS manipulations from Martin Stacey - UCL



What is Generative Design?
• A collaborative design process between humans and computers. 
• During this process, the designer 

• defines the design parameters and the computer produces design studies (alternatives), 
• evaluates them against quantifiable goals set by the designer, 
• improves the studies by using results from previous ones and feedback from the designer, and 
• ranks the results based on how well they achieve the designer’s original goals.

29Generative Design

Some generated alternatives - Mars Innovation District - The Living



What is Generative Design?
• Generative design is a specific application of the computational design approach, 

with the following distinctions:
• The designer defines goals to achieve a design (rather than the exact steps).
• The computer helps the designer to explore the design space and generate multiple 

design options (not just one).
• The computer enables the designer to find a set of optimal solutions that satisfy multiple 

competing goals.
• The designer compares multiple design scenarios to find a set of design options that fits 

the design goals.

30Generative Design



What is Generative Design?
• In a nutshell, generative design is a goal-driven approach to design 

that leverages automation so that designers and engineers can:
• have better insight into their designs;
• make faster, more informed design decisions; and
• explore more options using the power of computers.

31Generative Design



Why should I use Generative Design?
• Better Outcomes and Insight

• As the designer, you specify which outcomes you want to achieve for your design and 
how they are measured. With your guidance, the computer produces sets of optimal 
designs, along with the data used to prove which design performs best against your 
goals. By analyzing how the generated designs measure up against the set goals, you 
can gain valuable insight into which design aspects impact the outcome and how.

32Generative Design

Maximization of active shared spaces - Mars Innovation District - The Living



Why should I use Generative Design?
• Faster, More Informed Design Decisions

• Generative design can help you find better designs for your project more quickly by 
leveraging what computers are good at: computation and repetition.

• Computers can generate and evaluate a huge number of design variants in only a 
fraction of the time it would take an individual designer, allowing you to learn what 
does and doesn't work at an accelerated pace.

33Generative Design

Design options generated - Mars Innovation District - The Living



Why should I use Generative Design?
• A Greater Variety of Options

• With a generative design approach, the initial design parameters you input are used to 
generate your potential design solutions, with the only limitation being how much 
computer power and time you have.

• For example, using traditional computational design techniques, it's feasible for you to 
explore ten variants (or more, perhaps). However, using generative design, an algorithm 
can generate thousands of variants in mere minutes.

34Generative Design

Design options generated - Bionic Partition for Airbus - The Living



A Short History of Generative Design
'70s

• Generative Design has been the holy grail of CAD and CAE since their inception. 
The earliest mentions in the late ’70s focused on shipbuilding and architecture.

'80s

• With the proliferation of CAD in the ’80s, the interest in generative design increased. 
The results were still limited by the computing power of the time.

'90s & '00s

• In the ’90s and early ’00s, simulation-driven design, such as topology optimization, 
started to gain traction. The first structural optimization software hit the market.

'10s

• In the ’10s, advancements in digital and additive manufacturing pushed companies to 
accelerate the development of commercial generative design solutions.

Today

• Generative design finds applications beyond structural optimization, enabled by 
the increased computational power and advanced engineering design software.

35Generative Design
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What goes into a Generative Design Process?

36Generative Design

• A generative design approach allows for a more integrated 
workflow between human and computer

Generate
•The design options are created 
or generated by the system, 
using algorithms and 
parameters specified by the 
designer.

Analyze
•The designs generated in the 
previous step are now 
measured or analyzed based 
on how well they achieve 
goals defined by the designer.

Rank
•The design options are 
ordered or ranked based on 
the results of the analysis.

Evolve
•The process ranks the design 
options to figure out in which 
direction they should be 
further developed or evolved.

Explore
•The designer compares and 
explores the generated 
designs, inspecting both the 
geometry and evaluation 
results.

Integrate
•The designer chooses a 
favorite design option and 
integrates it into the wider 
project or design work.



Anatomy of Each Stage
• Each of these stages can be further broken down into 

define, run and results steps. 
• The define step is the responsibility of the designer, 
• while the run and results steps are performed by the computer.

• Take the Generate Stage for example

37Generative Design

Generate
The design options are created or 
generated by the system, using algorithms 
and parameters specified by the designer.

Define

Run

Results



Anatomy of Each Stage: Define
• For the define step, the designer will need to do the following:

• Establish the generation algorithm - this is the logic that defines how designs are 
generated, which may include things like constraints and rules.

• Provide the generation parameters - these are the variables or inputs needed for the 
previously-defined algorithm.

• This define step is present and vital for all stages of the generative design process, as the 
validity of outputs relies on the quality of the designer’s contribution in this step.

• With clear and concise logic, the computer can provide suitable outputs.

38Generative Design



Anatomy of Each Stage: Run & Results
• Run

• Once everything is defined in the algorithm and its accompanying parameters, the computer begins 
to run, meaning it starts to generate different design options. 

• This process might happen locally on the designer's computer or, for more intensive calculations, it 
may happen using cloud computing.

• Results
• The things that are generated during the run step are the final outputs from each stage. These are 

then used as inputs or parameters in subsequent phases.
• For example, the designs created in the generate phase will be used as one of input parameters in 

the analysis phase.

39Generative Design



Overall 
Process

40Generative Design

• The diagram shows
• Each stage and 

step is dependent
on the previous 
one.

• The entire study 
process is 
repeatable, as 
each iteration 
learns from the 
previous results.



Generative Design Vs. Topology Optimization
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• Often (erroneously) used interchangeably. Both are valuable simulation-based 
engineering design terms, but they have distinctly different meanings.
• Topology optimization is a simulation-driven structural optimization tool. 

Designers define the technical requirements, and the software removes material 
from the designated design space through iterative simulation steps.

• Generative design is a broad design methodology that allows engineers and 
designers to build both technical and non-technical requirements into their models.

Remove

vs.

Generate



Generative Design Vs. Topology Optimization
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https://www.youtube.com/watch?v=QLA92V_85_I



Generative Design & Additive Manufacturing
• Generative design enables the development of high-performance 3D 

printed products and is a near-necessity for any DfAM workflow.

43Generative Design

One of the key benefits of industrial 3D 
printing is that it gives engineers the ability 
to manufacture highly complex and high-
performance parts that are either 
impossible or prohibitively expensive to 
produce using traditional techniques.

However, modeling these complex and 
optimized geometries manually in 
traditional CAD software is a near-
impossible task.  The digital toolset of 
generative design enables engineers to 
manage the complexity of additive 
manufacturing and use it to their advantage.

DfAM = Design for Additive Manufacturing



Benefits & Limitations
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Examples of Generative Design
• MaRs Innovation District of Toronto
• Furniture Design
• A Further Analogy
• VolksWagen’s Classical Mini Van

45Generative Design



MaRs Innovation District of Toronto
• To design the new office and research space in the MaRs Innovation District of 

Toronto, Autodesk used generative design processes.
• Starting with high-level goals and constraints, the design team used the power of computation to 

generate, evaluate and evolve thousands of design alternatives. The result was a high-performing 
and novel work environment that would not have been possible without this approach.

46Generative Design

• Generate
• The designers created a geometric 

system that meant the computer could 
explore multiple configurations of 
work neighborhoods, amenity spaces 
and circulation zones. 

• This work represents the define step of 
the generate phase.

• Using this algorithm, the computer 
varied the parameters to produce 
thousands of design options.



MaRs Innovation District of Toronto
• Evaluate
• For this stage, information was collected from employees and 

managers about work styles and location preferences. Based on 
this data, six primary and measurable goals were defined:
• work style preference
• adjacency preference
• low distraction
• interconnectivity
• daylight
• views to the outside

47Generative Design



MaRs Innovation District of Toronto
• Explore
• After the designs were evaluated, the designers looked at the 

solution space to explore the generated designs together with their 
evaluation results.

• Considering each 
defined goal, they 
identified the design 
that best achieved 
the goals overall.

48Generative Design



Furniture Design
• Looking at a simpler example, let's consider the process of designing a typical, four-

legged table.
• Using a standard approach, you as the designer would manually define the length, 

width, height and material of the table. 
• The resulting output is a single, physical object with a fixed, immutable form. 
• Here, you have the option to test several distinct sets of dimensions and material 

combinations to end up with three or four prototypes (or however many iterations you 
wanted).

49Generative Design

In a generative design approach, 
you would instead create an 
algorithm that specifies:
• a range of permissible values 

for each dimension;
• a series of available materials 

and their properties (such as 
cost/m²); and

• a set of goals that measure how 
successful a table design is.



Furniture Design
• Generate

• Then, you would use a computer to run the algorithm and generate a series of 
designs that fall within the ranges you previously specified.

• Some designs will be short and wide, others will be tall and thin, but each will 
satisfy the user-defined constraints. This is key, as many designs can be 
generated very quickly, much more than any human could feasibly examine.

50Generative Design

Let's imagine the computer 
looked at 20 different values for 
each of: length, width, height, 
table/leg material combinations. 

The resulting solution space 
would be 20*20*20*20 = 
160,000 designs, which is way 
too many options for a person to 
reasonably evaluate.

Matrix showing 36 generated table 
designs, varying width, length, and height.



Furniture Design
• Evaluate

• The next step is to define how the generated designs are evaluated. This is your 
opportunity to clearly express your design goals.

• Let's see how different design goals could be expressed in this evaluation stage:

51Generative Design

A range of table designs (sizes), colour-coded 
based on evaluator function result (cost).

Design goal Analysis method Ranking method

lowest cost per desk, 
with minimum 800mm x 
600mm size

desk size: at least 
800mm x 600mm in size 
= yes/no and desk cost: 
area * material cost/m² 
= currency $ value)

lowest cost first and 
only options that satisfy 
area requirements

most profitable (largest 
desk area with lowest 
material cost)

desk area = outputs m² 
and unit cost (area * 
material cost/m²) = 
currency $ value

largest area and lowest 
cost

The matrix above exemplifies how 
you can use this stage in the 
generative design process to design 
for wildly different scenarios.



Furniture Design
• Evaluate

• In the first scenario, lowest overall cost 
is the driving goal, so we can expect small 
desk sizes and cheap materials while still 
satisfying the size requirement. 
• This scenario would be relatively simple for 

humans to replicate, so generative design 
would only come in handy when the variation 
or complexity of material costs is high.

• For the second scenario, we're aiming to 
maximize return on investment (ROI) for 
each desk. 
• This means that we can expect larger, more 

expensive desks than the first scenario, but that 
still have the best overall ROI. It wouldn't be 
unexpected for this process to identify a desk 
with cheap legs and more expensive tabletop 
materials as a viable option.

• A good illustration of using generative design to work 
towards multiple and competing goals, which is very 
hard for humans to replicate.

52Generative Design

Design goal Analysis 
method

Ranking 
method

lowest cost 
per desk, with 
minimum 
800mm x 
600mm size

desk size: at 
least 800mm x 
600mm in size 
= yes/no and 
desk cost: area 
* material 
cost/m² = 
currency $
value)

lowest cost 
first and only 
options that 
satisfy area 
requirements

most 
profitable 
(largest desk 
area with 
lowest 
material cost)

desk area = 
outputs m² and 
unit cost (area 
* material 
cost/m²) = 
currency $
value

largest area 
and lowest 
cost



Furniture Design
• Results

• As you can see, both of these examples follow the same fairly generic process, 
which is why there are so many possible applications of generative design in 
areas as diverse as aviation, automotive and building design, manufacturing, 
and product design.
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Visualizing evaluator function results as a color range.



VW’s Mini Van
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Applications of Generative Design
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Applications of Generative Design
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Autodesk Generative Design
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https://www.youtube.com/watch?v=CtYRfMzmWFU



Generative Design NASA’s Lander
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Roboy 2.0
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https://redshift.autodesk.com/articles/humanoid-robot-design



Roboy 3.0
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2.0



A.I. Chair by Philippe Starck
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https://www.youtube.com/watch?v=M22NyJW8Hfo

https://www.youtube.com/watch?v=M22NyJW8Hfo


A.I. Chair by Philippe Starck
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A.I. Chair by Philippe Starck
63Generative Design

• Philippe Starck is a French 
industrial architect and designer 
known for his wide range of 
designs, including interior design, 
architecture, household objects, 
furniture, boats and other 
vehicles.

--Wikipedia

• … design has no future, because 
matter has no future.  we enter 
now the era of dematerialization 
and bionism, that is to say the 
alliance of the body with 
integrated high technology. in the 
upcoming years, all the useless 
things around us will disappear, 
they will directly integrate our 
environment and our body …

--philippe starck.



Fusion 360 Generative Design Technology
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https://www.youtube.com/watch?v=a6bDLMWlS98
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